Surface area of a cube (2024)

GCSE Maths Geometry and Measure 3D Shapes Cuboid

Surface Area

Here we will learn about the surface area of a cube, including how to calculate the surface area of a cube and how to find missing values of a cube given its surface area.

There are also surface area of a cube worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

What is the surface area of a cube?

The surface area of a cube is the sum of the areas of all the faces of a cube. A cube is a three-dimensional solid object that has six congruent square faces. This means they are all the same size.

To find the area of each face we multiply the side lengths together. We then multiply the area of each of the square faces by six.

The formula to calculate the surface area, S, of a cube is

S=6x^{2}

where x represents the side length of the cube.

We can use this formula to find the surface area of any cube.

Surface area of a cube (1)

Surface area is measured in square units, for example mm^{2}, \ cm^{2} or m^{2}.

What is the surface area of a cube?

Surface area of a cube (2)

How to calculate the surface area of a cube

In order to calculate the surface area of a cube:

  1. Write the formula for the surface area of the cube.
  2. Substitute any known value(s) into the formula.
  3. Complete the calculation.
  4. Write the solution, including the units.

Explain how to calculate the surface area of a cube

Surface area of a cube (3)

Surface area of a cube (4)

Volume and surface area of a cube worksheet

Surface area of a cube (5)

Get your free surface area of a cube worksheet of 20+ volume and surface area of a cube questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE

x

Surface area of a cube (6)

Volume and surface area of a cube worksheet

Surface area of a cube (7)

Get your free surface area of a cube worksheet of 20+ volume and surface area of a cube questions and answers. Includes reasoning and applied questions.

DOWNLOAD FREE

Surface area of a cube examples

Example 1: integer side lengths

Work out the surface area of the cube below.

Surface area of a cube (8)
  1. Write the formula for the surface area of the cube.

S=6x^{2}

2Substitute any known value(s) into the formula.

Here, x=5 and so we have

S=6\times{5}^{2}.

3Complete the calculation.

S=6\times{5}^{2}=6\times{25}=150

4Write the solution, including the units.

As the unit of length is centimetres (cm), the unit of area is square centimetres (cm^{2}).

S=150cm^{2}.

Example 2: one known edge of the cube

Work out the surface area of the cube.

Surface area of a cube (9)

Write the formula for the surface area of the cube.

S=6x^{2}

Substitute any known value(s) into the formula.

Complete the calculation.

S=6\times{6}^{2}=6\times{36}=216

Write the solution, including the units.

Example 3: worded problem

A cube structure has a side length of 7m. Calculate the total surface area of the structure.

Write the formula for the surface area of the cube.

S=6x^{2}

Substitute any known value(s) into the formula.

Complete the calculation.

S=6\times{7}^{2}=6\times{49}=294

Example 4: area of a face given

The area of the face of a cube is 30cm^{2}. Work out the surface area of the cube.

Write the formula for the surface area of the cube.

S=6x^{2}

Substitute any known value(s) into the formula.

Complete the calculation.

S=6\times{30}=180

Write the solution, including the units.

Example 5: find the length of a cube given the surface area

The surface area of a cube is 24cm^{2}. Work out the length of the cube.

Write the formula for the surface area of the cube.

S=6x^{2}

Substitute any known value(s) into the formula.

Complete the calculation.

Write the solution, including the units.

Example 6: find the length of a cube given the surface area (decimal solution)

The surface area of a cube is 483mm^{2}. Work out the length of the side x correct to 2 decimal places.

Surface area of a cube (10)

Write the formula for the surface area of the cube.

S=6x^{2}

Substitute any known value(s) into the formula.

Complete the calculation.

Write the solution, including the units.

x=8.97mm \ (2dp).

Common misconceptions

  • Missing/incorrect units

You should always include units in your answer.

Surface area is measured in square units (for example, mm^2, \ cm^2, \ m^2 etc.).

  • Calculating with different units

You need to make sure all measurements are in the same units before calculating the surface area.

For example, you can’t have some in cm and some in m.

  • Calculating volume instead of surface area

Volume and surface area are different quantities. The volume of the cube is the three-dimensional space in a shape and is measured in cubic units.

Surface area is the amount of space covering the outside of a 3D shape. To find surface area, we need to work out the area of one face and multiply it by six.

Surface area of a cuboid is part of our series of lessons to support revision on cuboid. You may find it helpful to start with the main cuboid lesson for a summary of what to expect, or use the step by step guides below for further detail on individual topics. Other lessons in this series include:

  • Cuboid
  • Volume of a cuboid
  • Surface area of a cuboid
  • Volume of a cube

Practice surface area of a cube questions

1. Work out the surface area of the cube.

Surface area of a cube (11)

27cm^3

Surface area of a cube (12)

12cm^2

Surface area of a cube (13)

36cm^2

Surface area of a cube (14)

54cm^2

Surface area of a cube (15)

S=6x^{2} where x=3cm.

S=6\times{3}^{2}=6\times{9}=54cm^{2}.

2. Calculate the surface area of the cube below. Write your answer in square centimetres.

Surface area of a cube (16)

0.125cm^3

Surface area of a cube (17)

15,000cm^2

Surface area of a cube (18)

6cm^2

Surface area of a cube (19)

1.5cm^2

Surface area of a cube (20)

S=6x^{2} where x=0.5m = 50cm.

S=6\times{50}^{2}=6\times{2500}=15,000cm^{2}.

3. Work out the surface area of the cube. Give your answer in cm^{2}.

Surface area of a cube (21)

96cm^2

Surface area of a cube (22)

9,600cm^2

Surface area of a cube (23)

960cm^2

Surface area of a cube (24)

9.6cm^2

Surface area of a cube (25)

S=6x^{2} where x=40cm=0.4m.

S=6\times{40}^{2}=6\times{1600}=9,600cm^{2}.

4. The surface area of a cube is 150cm^{2}. Find the length of the side of the cube.

135 \ 000cm

Surface area of a cube (26)

2.04cm

Surface area of a cube (27)

5cm

Surface area of a cube (28)

12.5cm

Surface area of a cube (29)

S=6x^{2} where S=150cm^{2}.

\begin{aligned}150&=6\times{x}^{2}\\\\25&=x^{2}\\\\x&=\sqrt{25}\\\\x&=5\end{aligned}

5. The surface area of a cube is 6m^{2}. Work out the length of each side x.

Surface area of a cube (30)

2m

Surface area of a cube (31)

1m

Surface area of a cube (32)

0.3m

Surface area of a cube (33)

0.41m

Surface area of a cube (34)

S=6x^{2} where S=6m^{2}.

\begin{aligned}6&=6\times{x}^{2}\\\\6\div{6}&=x^{2}\\\\x^{2}&=1\\\\x&=\sqrt{1}\\\\x&=1\end{aligned}

6. The surface area of a cube is 186m^{2}. Work out the length of each side. Write your answer to the nearest centimetre.

5.57m

Surface area of a cube (35)

2.27m

Surface area of a cube (36)

15.50m

Surface area of a cube (37)

207,576m

Surface area of a cube (38)

S=6x^{2} where S=186m^{2}.

\begin{aligned}186&=6\times{x}^{2}\\\\31&=x^{2} \\\\x&=\sqrt{31}=5.567764362830…=5.57\text{ (2dp)}\end{aligned}

Surface area of a cube GCSE questions

1. Here is a cube.

Surface area of a cube (39)

The cube has a volume of 216cm^{3}.

Given that V=x^{3}, where x is the side length of the cube, work out the total surface area of the cube.

(4 marks)

Show answer

x=\sqrt[3]{216} \ (=6cm)

(1)

6 \times 6 \ or \ 36cm^2

(1)

6 \times 6 \times 6 \ or \ 36 \times 6

(1)

216cm^2

(1)

2. The diagram shows a cube of side 3cm.

Surface area of a cube (40)

Determine the volume : surface area ratio of the cube.

Write your answer as a ratio in the simplest form.

(5 marks)

Show answer

3 \times 3 \times 6 \ or \ 9 \times 6

(1)

54cm^2

(1)

3 \times 3 \times 3 = 27cm^3

(1)

27:54

(1)

1:2

(1)

3. The total surface area of a cube is 294cm^{2}. Work out the side length of the cube.

(3 marks)

Show answer

294 \div{6} \ or \ 49

(1)

\sqrt{49}

(1)

7cm

(1)

Learning checklist

You have now learned how to:

  • Calculate the surface area of a cube
  • Use the properties of faces, surfaces, edges and vertices of cubes and cuboids to solve problems in 3D

The next lessons are

  • Prism shape
  • Triangular prism
  • Sphere

Still stuck?

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

Surface area of a cube (41)

Find out more about our GCSE maths tuition programme.

Surface area of a cube (2024)

References

Top Articles
Latest Posts
Recommended Articles
Article information

Author: Edmund Hettinger DC

Last Updated:

Views: 6006

Rating: 4.8 / 5 (58 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Edmund Hettinger DC

Birthday: 1994-08-17

Address: 2033 Gerhold Pine, Port Jocelyn, VA 12101-5654

Phone: +8524399971620

Job: Central Manufacturing Supervisor

Hobby: Jogging, Metalworking, Tai chi, Shopping, Puzzles, Rock climbing, Crocheting

Introduction: My name is Edmund Hettinger DC, I am a adventurous, colorful, gifted, determined, precious, open, colorful person who loves writing and wants to share my knowledge and understanding with you.